LO6 Online Optimization and Learning: Applications

CS 295 Optimization for Machine Learning Ioannis Panageas

Multiplicative Weights Update (recap)

Algorithm (**MWUA**). *We define the following algorithm:*

- 1. Initialize $w_i^0 = 1$ for all $i \in [n]$.
- 2. For t=1 ... T do
- 3. Choose action i with probability proportional to w_i^{t-1} .
- 4. For each action i do

5.
$$w_i^t = (1 - \epsilon)^{c_i^t} w_i^{t-1}$$
.

- 6. End For
- 7. End For

Remarks:

•
$$\epsilon \coloneqq \sqrt{\frac{\log n}{T}}$$

• We choose *i* with
probability
$$p_i^t = \frac{w_i^{t-1}}{\sum_i w_i^{t-1}}$$
.

 c_i^t is the cost of action *i* at time *t* chosen by the adversary.

Theorem (MWUA). Let $OPT = \min_i \sum_{t=1}^T c_i^t$

$$\mathbb{E}[cost_{MWUA}] \le OPT + \epsilon T + \frac{\log n}{\epsilon}.$$

Proof. Let's define the **potential** function $\phi_t = \sum_i w_i^t$.

Let best action in handsight be i^* then, we have

$$\phi_T > w_{i^*}^T = (1 - \epsilon)^{OPT}.$$

Now
$$\phi_{t+1} = \sum w_i^{t+1} = \sum w_i^t (1-\epsilon)^{c_i^t}$$

Theorem (MWUA). Let $OPT = \min_i \sum_{t=1}^T c_i^t$

$$\mathbb{E}[cost_{MWUA}] \le OPT + \epsilon T + \frac{\log n}{\epsilon}.$$

Proof. Let's define the **potential** function $\phi_t = \sum_i w_i^t$.

Let best action in handsight be i^* then, we have

$$\phi_T > w_{i^*}^T = (1 - \epsilon)^{OPT}.$$

Now
$$\phi_{t+1} = \sum w_i^{t+1} = \sum w_i^t (1-\epsilon)^{c_i^t}$$
$$= \sum \phi_t p_i^{t+1} (1-\epsilon)^{c_i^t}$$

Theorem (MWUA). Let $OPT = \min_i \sum_{t=1}^T c_i^t$

$$\mathbb{E}[cost_{MWUA}] \le OPT + \epsilon T + \frac{\log n}{\epsilon}$$

Proof. Let's define the potential function $\phi_t = \sum_i w_i^t$.

Let best action in handsight be i^* then, we have

$$\phi_T > w_{i^*}^T = (1 - \epsilon)^{OPT}.$$

Now
$$\phi_{t+1} = \sum w_i^{t+1} = \sum w_i^t (1-\epsilon)^{c_i^t}$$

$$= \sum \phi_t p_i^{t+1} (1-\epsilon)^{c_i^t}$$
$$= \phi_t \sum p_i^{t+1} (1-\epsilon)^{c_i^t}$$

Optimization for Machine Learning

$$\phi_{t+1} = \phi_t \sum p_i^{t+1} (1-\epsilon)^{c_i^t}$$

$$\phi_{t+1} = \phi_t \sum p_i^{t+1} (1-\epsilon)^{c_i^t}$$
$$\leq \phi_t \sum p_i^{t+1} (1-\epsilon \cdot c_i^t)$$

Optimization for Machine Learning

$$\phi_{t+1} = \phi_t \sum p_i^{t+1} (1-\epsilon)^{c_i^t}$$
$$\leq \phi_t \sum p_i^{t+1} (1-\epsilon \cdot c_i^t)$$
$$= \phi_t (1-\epsilon \cdot \mathbb{E}[\operatorname{cost}(t)_{MWUA}])$$

Optimization for Machine Learning

$$\phi_{t+1} = \phi_t \sum p_i^{t+1} (1-\epsilon)^{c_i^t}$$

$$\leq \phi_t \sum p_i^{t+1} (1-\epsilon \cdot c_i^t)$$

$$= \phi_t (1-\epsilon \cdot \mathbb{E}[\operatorname{cost}(t)_{MWUA}])$$

$$\leq \phi_t e^{-\epsilon \mathbb{E}[\operatorname{cost}(t)_{MWUA}]}$$

Optimization for Machine Learning

Proof cont. Therefore

$$\phi_{t+1} = \phi_t \sum p_i^{t+1} (1-\epsilon)^{c_i^t}$$

$$\leq \phi_t \sum p_i^{t+1} (1-\epsilon \cdot c_i^t)$$

$$= \phi_t (1-\epsilon \cdot \mathbb{E}[\operatorname{cost}(t)_{MWUA}])$$

$$\leq \phi_t e^{-\epsilon \mathbb{E}[\operatorname{cost}(t)_{MWUA}]}$$

Telescopic product gives
$$\phi_T \leq \phi_1 e^{-\epsilon \mathbb{E}[\text{cost}_{MWUA}]}.$$

Therefore $(1-\epsilon)^{OPT} \leq e^{-\epsilon \mathbb{E}[\operatorname{cost}_{MWUA}]} n$, or $OPT(-\epsilon-\epsilon^2) \leq \log n - \epsilon \mathbb{E}[\operatorname{cost}_{MWUA}]$.

Proof cont. Therefore

Plugging in
$$\epsilon = \sqrt{\frac{\log n}{T}}$$
, gives $\frac{1}{T} (\mathbb{E}[\operatorname{cost}_{MWUA}] - OPT) \le 2\sqrt{\frac{\log n}{T}}!$

 $\leq \phi_t e^{-\epsilon \mathbb{E}[\operatorname{cost}(\mathbf{t})_{\mathrm{MWUA}}]}$

Telescopic product gives
$$\phi_T \leq \phi_1 e^{-\epsilon \mathbb{E}[\text{cost}_{MWUA}]}.$$

Therefore $(1-\epsilon)^{OPT} \leq e^{-\epsilon \mathbb{E}[\operatorname{cost}_{MWUA}]} n$, or $OPT(-\epsilon-\epsilon^2) \leq \log n - \epsilon \mathbb{E}[\operatorname{cost}_{MWUA}]$.

Problem (Linear Program). *Suppose we are given a linear program in the standard form*

$$Ax \ge b$$

s.t $x \ge 0$

Goal (Check feasibility). *Compute a vector* $x^* \ge 0$ *such that for some* $\epsilon > 0$ *we get*

$$\alpha_i^{\top} x^* \geq b_i - \epsilon$$
, for all *i*.

Oracle access: Given a vector c and scalar d, does there exist a $x \ge 0$ such that $c^T x \ge d$.

Remark: Using the above and binary search, you can solve any linear program!

Problem (Linear Program). *Suppose we are given a linear program in the standard form*

$$Ax \ge b$$

s.t $x \ge 0$

Goal (Check feasibility). *Compute a vector* $x^* \ge 0$ *such that for some* $\epsilon > 0$ *we get*

$$\alpha_i^{\top} x^* \geq b_i - \epsilon$$
, for all *i*.

Oracle access: Given a vector c and scalar d, does there exist a $x \ge 0$ such that $c^T x \ge d$.

Remark: Using the above and binary search, you can solve any linear program!

Use MWUA, what are the actions/costs?

Setting. Consider every constraint $a_i^{\top} x - b_i$ as an action.

• Choose
$$c_i(x) = \frac{a_i^\top x - b_i}{\rho}$$
 with ρ chosen so that $|c_i| \leq 1$.

- Initiliazation $w_i^0 = 1$ (uniform distribution).
- For each t = 1, ..., T, ask oracle if there exists a point $x \ge 0$ such that $c^{\top} x \ge d$ where

$$c = \sum p_i^t a_i, \ d = \sum p_i^t b_i.$$

Setting. Consider every constraint $a_i^{\top} x - b_i$ as an action.

• Choose
$$c_i(x) = \frac{a_i^\top x - b_i}{\rho}$$
 with ρ chosen so that $|c_i| \leq 1$.

- Initiliazation $w_i^0 = 1$ (uniform distribution).
- For each t = 1, ..., T, ask oracle if there exists a point $x \ge 0$ such that $c^{\top} x \ge d$ where

$$c = \sum p_i^t a_i, \ d = \sum p_i^t b_i.$$

If the answer is no, linear problem infeasible!

Setting. Consider every constraint $a_i^{\top} x - b_i$ as an action.

• Choose
$$c_i(x) = \frac{a_i^\top x - b_i}{\rho}$$
 with ρ chosen so that $|c_i| \leq 1$.

- Initiliazation $w_i^0 = 1$ (uniform distribution).
- For each t = 1, ..., T, ask oracle if there exists a point $x \ge 0$ such that $c^{\top} x \ge d$ where

$$c = \sum p_i^t a_i, \ d = \sum p_i^t b_i.$$

If the answer is no, linear problem infeasible!

If the answer is yes (returns a x^t), each action suffers cost $c_i^t = c_i(x^t)$.

From our theorem we get that

$$0 \le \sum_{t} \sum_{i} p_{i}^{t} (a_{i}^{\top} x_{i}^{t} - b_{i}) \le \sum_{t} \sum_{i} p_{i}^{*} (a_{i}^{\top} x_{i}^{t} - b_{i}) + 2\rho \sqrt{\frac{\log m}{T}}$$

where p^* is the optimal handsight. But the RHS is at most (for all i)

$$\sum_{t} a_i^{\top} x_i^t - b_i + 2\rho \sqrt{\frac{\log m}{T}} = a_i^{\top} \sum_{t} x_i^t - Tb_i + 2\rho \sqrt{\frac{\log m}{T}}.$$

From our theorem we get that

$$0 \le \sum_{t} \sum_{i} p_{i}^{t} (a_{i}^{\top} x_{i}^{t} - b_{i}) \le \sum_{t} \sum_{i} p_{i}^{*} (a_{i}^{\top} x_{i}^{t} - b_{i}) + 2\rho \sqrt{\frac{\log m}{T}}.$$

where p^* is the optimal handsight. But the RHS is at most (for all i)

$$\sum_{t} a_i^{\top} x_i^t - b_i + 2\rho \sqrt{\frac{\log m}{T}} = a_i^{\top} \sum_{t} x_i^t - Tb_i + 2\rho \sqrt{\frac{\log m}{T}}.$$

Therefore, by choosing $T = \frac{4\rho^2 \log m}{\epsilon^2}$, $\tilde{x} = \frac{1}{T} \sum_t x^t$ we get that $a_i^{\top} \tilde{x} - b_i + \epsilon \ge 0$ for all i.

Optimization for Machine Learning

Definition. Consider a matrix A (called payoff). A_{ij} denotes the amount of money player x pays to player y. Example (Rock-Paper-Scissors):

$$A = \left(\begin{array}{rrrr} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right)$$

Definition. Consider a matrix A (called payoff). A_{ij} denotes the amount of money player x pays to player y. Example (Rock-Paper-Scissors):

$$A = \left(\begin{array}{rrrr} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right)$$

Definition (Nash Equilibrium). A vector (x^*, y^*) is called a NE if

$$x^* {}^{\top}Ay^* \ge x^* {}^{\top}A\tilde{y}$$
 for all $\tilde{y} \in \Delta$ and $x^* {}^{\top}Ay^* \le \tilde{x} {}^{\top}Ay^*$ for all $\tilde{x} \in \Delta$.

Definition. Consider a matrix A (called payoff). A_{ij} denotes the amount of money player x pays to player y. Example (Rock-Paper-Scissors):

$$A = \left(\begin{array}{rrrr} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right)$$

Definition (Nash Equilibrium). A vector (x^*, y^*) is called a NE if

$$x^* {}^{\top}Ay^* \ge x^* {}^{\top}A\tilde{y}$$
 for all $\tilde{y} \in \Delta$ and $x^* {}^{\top}Ay^* \le \tilde{x} {}^{\top}Ay^*$ for all $\tilde{x} \in \Delta$.

How to compute NE? Let them run MWUA!

Algorithm (MWUA). *We define the following algorithm for zero sum games:*

- 1. Initialize $p_{i,x}^0 = 1/n$, $p_{i,y}^0 = 1/n$ for all *i* (both players, uniform).
- 2. For $t=1 \dots T$ do
- 3. Player x chooses i with probability $p_{i,x}^t$ and y with $p_{i,y}^t$ respectively.
- 4. For each action i do

5.
$$p_{i,x}^t = p_{i,x}^{t-1} \frac{(1-\epsilon)^{(Ap_y^{t-1})_i}}{Z_x}$$

6.
$$p_{i,y}^t = p_{i,y}^{t-1} \frac{(1+\epsilon)^{(A^\top p_x^{t-1})}}{Z_y}$$

- 7. End For
- 8. End For

Remarks:

•
$$\epsilon \coloneqq \sqrt{\frac{\log n}{T}}$$

•
$$c_i^t \coloneqq (Ap_y^{t-1})_i$$
 is the

(expected cost) of action *i* at time *t* for player *x*.

• For player y is the expected utility...

Theorem (MWUA). Let $\tilde{x} = \frac{1}{T} \sum_{t} p_{x}^{t}$ and $\tilde{y} = \frac{1}{T} \sum_{t} p_{y}^{t}$. Assume that A has entries in [-1,1] and $T = \Theta\left(\frac{\log n}{\epsilon^{2}}\right)$. It holds (\tilde{x}, \tilde{y}) is an ϵ -approximate NE that is $\tilde{x}^{\top} A \tilde{y} \leq x'^{\top} A \tilde{y} + \epsilon$ and $\tilde{x}^{\top} A \tilde{y} \geq x^{\top} A y' - \epsilon$.

Theorem (MWUA). Let $\tilde{x} = \frac{1}{T} \sum_{t} p_{x}^{t}$ and $\tilde{y} = \frac{1}{T} \sum_{t} p_{y}^{t}$. Assume that A has entries in [-1,1] and $T = \Theta\left(\frac{\log n}{\epsilon^{2}}\right)$. It holds (\tilde{x}, \tilde{y}) is an ϵ -approximate NE that is $\tilde{x}^{\top} A \tilde{y} \leq x'^{\top} A \tilde{y} + \epsilon$ and $\tilde{x}^{\top} A \tilde{y} \geq x^{\top} A y' - \epsilon$.

Proof. Exercise 6!

Theorem (MWUA). Let $\tilde{x} = \frac{1}{T} \sum_{t} p_{x}^{t}$ and $\tilde{y} = \frac{1}{T} \sum_{t} p_{y}^{t}$. Assume that A has entries in [-1,1] and $T = \Theta\left(\frac{\log n}{\epsilon^{2}}\right)$. It holds (\tilde{x}, \tilde{y}) is an ϵ -approximate NE that is $\tilde{x}^{\top} A \tilde{y} \leq x'^{\top} A \tilde{y} + \epsilon$ and $\tilde{x}^{\top} A \tilde{y} \geq x^{\top} A y' - \epsilon$.

Proof. Exercise 6!

Remark: The result above is not true for last iterate p_x^T , p_y^T .

Definition. *Matching Pennies:*

$$A = \left(\begin{array}{cc} -1 & 1\\ 1 & -1 \end{array}\right) \Rightarrow$$

Definition (Follow the Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions for all k, differentiable in some convex set \mathcal{K} . FTL is defined:

Initialize at some x_0 . For t:=1 to T do

1. Choose
$$x_t = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{k=0}^{t-1} f_k(x)$$
.

Remark: The above can perform really poorly! Why?

Definition (Follow the Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions for all k, differentiable in some convex set \mathcal{K} . FTL is defined:

Initialize at some x_0 . For t:=1 to T do 1. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{k=0}^{t-1} f_k(x)$.

Remark: The above can perform really poorly! Why?

Consider n = 2, $\mathcal{K} = \Delta_2$, $x_0 = (1/2, 1/2)$ and $f_k(x) = x^{\top} \ell_k$.

• $\ell_0 = (0, 1/2)$

Definition (Follow the Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions for all k, differentiable in some convex set \mathcal{K} . FTL is defined:

Initialize at some x_0 . For t:=1 to T do 1. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{k=0}^{t-1} f_k(x)$.

Remark: The above can perform really poorly! Why?

Consider n = 2, $\mathcal{K} = \Delta_2$, $x_0 = (1/2, 1/2)$ and $f_k(x) = x^{\top} \ell_k$.

•
$$\ell_0 = (0, 1/2)$$
 • Thus $x_1 = (1, 0)$

Definition (Follow the Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions for all k, differentiable in some convex set \mathcal{K} . FTL is defined:

Initialize at some x_0 . For t:=1 to T do 1. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{k=0}^{t-1} f_k(x)$.

Remark: The above can perform really poorly! Why?

Consider n = 2, $\mathcal{K} = \Delta_2$, $x_0 = (1/2, 1/2)$ and $f_k(x) = x^{\top} \ell_k$.

- $\ell_0 = (0, 1/2)$ Thus $x_1 = (1, 0)$
- $\ell_1 = (1,0)$

Definition (Follow the Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions for all k, differentiable in some convex set \mathcal{K} . FTL is defined:

Initialize at some x_0 . For t:=1 to T do 1. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{k=0}^{t-1} f_k(x)$.

Remark: The above can perform really poorly! Why?

Consider n = 2, $\mathcal{K} = \Delta_2$, $x_0 = (1/2, 1/2)$ and $f_k(x) = x^{\top} \ell_k$.

- $\ell_0 = (0, 1/2)$ Thus $x_1 = (1, 0)$
- $\ell_1 = (1,0)$ Thus $x_2 = (0,1)$

Optimization for Machine Learning

Definition (Follow the Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions for all k, differentiable in some convex set \mathcal{K} . FTL is defined:

Initialize at some x_0 . For t:=1 to T do 1. Choose $x_t = \operatorname{argmin}_{u \in V} X_t$

. Choose
$$x_t = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{k=0}^{t-1} f_k(x)$$
.

Remark: The above can perform really poorly! Why?

Consider n = 2, $\mathcal{K} = \Delta_2$, $x_0 = (1/2, 1/2)$ and $f_k(x) = x^{\top} \ell_k$.

- $\ell_0 = (0, 1/2)$ Thus $x_1 = (1, 0)$
- $\ell_1 = (1,0)$ Thus $x_2 = (0,1)$

Regret T/2 hence average Regret not vanishing!

Definition (Follow the Regularized Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex for all k, differentiable in some convex set K. Moreover, let R be a strongly convex function. FTRL is defined:

Initialize at some x_0 . For t:=1 to T do 1. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \{ \epsilon_{t-1} \cdot \sum_{k=0}^{t-1} f_k(x) + \mathbf{R}(x) \}.$

What happens when $R(x) = \frac{1}{2} ||x||^2$ and $f_k(x) = x^T c_k$ (linear in x)?

Definition (Follow the Regularized Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex for all k, differentiable in some convex set K. Moreover, let R be a strongly convex function. FTRL is defined:

Initialize at some x_0 . For t:=1 to T do 1. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \{ \epsilon_{t-1} \cdot \sum_{k=0}^{t-1} f_k(x) + \mathbb{R}(x) \}.$

What happens when $R(x) = \frac{1}{2} ||x||^2$ and $f_k(x)$

Definition (Follow the Regularized Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex for all k, differentiable in some convex set K. Moreover, let R be a strongly convex function. FTRL is defined:

Initialize at some
$$x_0$$
.
For t:=1 to T do
1. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \{ \epsilon_{t-1} \cdot \sum_{k=0}^{t-1} f_k(x) + \mathbf{R}(x) \}.$

What happens when $R(x) = \frac{1}{2} ||x||^2$ and $f_k(x)$ Online GD! What happens when $R(x) = \sum x_i \log x_i$ (negative entropy) and $f_k(x) = x^T c_k$ (linear in x)?

Definition (Follow the Regularized Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex for all k, differentiable in some convex set K. Moreover, let R be a strongly convex function. FTRL is defined:

Initialize at some
$$x_0$$
.
For t:=1 to T do
1. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \{ \epsilon_{t-1} \cdot \sum_{k=0}^{t-1} f_k(x) + \mathbb{R}(x) \}.$

What happens when
$$R(x) = \frac{1}{2} ||x||^2$$
 and $f_k(x)$ Online GD!What happens when $R(x) = \sum x_i \log x_i$ (negative entMWUA!Exercise 7! (MWUA)

Conclusion

- Introduction to Online Optimization and Learning.
 - Applications of MWUA.
 - Introduction to FTRL
- Next week we will talk about accelerated methods!